Logo

statsmodels.nonparametric.kernel_density.KDEMultivariateConditional.pdf

KDEMultivariateConditional.pdf(endog_predict=None, exog_predict=None)[source]

Evaluate the probability density function.

Parameters:

endog_predict: array_like, optional :

Evaluation data for the dependent variables. If unspecified, the training data is used.

exog_predict: array_like, optional :

Evaluation data for the independent variables.

Returns:

pdf: array_like :

The value of the probability density at endog_predict and exog_predict.

Notes

The formula for the conditional probability density is:

f(X|Y)=\frac{f(X,Y)}{f(Y)}

with

f(X)=\prod_{s=1}^{q}h_{s}^{-1}k
\left(\frac{X_{is}-X_{js}}{h_{s}}\right)

where k is the appropriate kernel for each variable.

Previous topic

statsmodels.nonparametric.kernel_density.KDEMultivariateConditional.loo_likelihood

Next topic

statsmodels.nonparametric.kernel_density.EstimatorSettings

This Page