Logo

statsmodels.tools.eval_measures.stde

statsmodels.tools.eval_measures.stde(x1, x2, ddof=0, axis=0)[source]

standard deviation of error

Parameters:

x1, x2 : array_like

The performance measure depends on the difference between these two arrays.

axis : int

axis along which the summary statistic is calculated

Returns:

stde : ndarray or float

standard deviation of difference along given axis.

Notes

If x1 and x2 have different shapes, then they need to broadcast. This uses numpy.asanyarray to convert the input. Whether this is the desired result or not depends on the array subclass.

Previous topic

statsmodels.tools.eval_measures.rmse

Next topic

statsmodels.tools.eval_measures.vare

This Page